Syllabus template

Course title: Fuel cells and hydrogen technology						
Programme: Practice Energy		Code: 4.29				
Type of course: Module S6-B	Course level: level I	Semester: I				
Form of classes: lectures , tutorials	Number of hours per week/ meeting : 1L, 1T	Credit points: 3 ECTS				
Education profile: practice		Course language: English				
Enrolment: yes / no						

GUIDE TO THE SUBJECT

I. COURSE CHART

COURSE OBJECTIVES

- C.1. Pass knowledge about how to process chemical energy in different types of cells.
- **C.2.** Familiarize yourself with the principle of operation of fuel cells, types of fuel cells, use, auxiliary equipment.
- **C.3.** Familiarize yourself with the role of individual elements in the link and material requirements.
- **C.4.** Transfer of knowledge about the types of energy carriers in cells, hydrogen properties, possibilities of hydrogen production and storage

PRELIMINARY COURSE REQUIREMENTS FOR KNOWLEDGE, SKILLS AND OTHER COMPETENCES

- 1. Knowledge of chemistry and physics, heat engineering.
- **2.** Ability to use professional literature.

LEARNING OUTCOMES

- **EK 1** He is knowledgeable about the types of cells, the construction of cells, and the reactions that occur in each cell.
- **EK 2** Know the construction of a fuel cell, the individual elements of a cell, and their functions and used materials.
- **EK 3** Can determine the interaction of the link in hybrid systems.
- **EK4-** Know the construction and functions of auxiliaries necessary for the operation of the fuel cell.
- EK 5- Know the properties of hydrogen, methods of obtaining, storing, distributing hydrogen.

COURSE CONTENT

Form of classes - lectures	Hours
W 1 – Cells I and Type II.	1
W 2 – The origins of the development of fuel cells. Fuel cell efficiency.	1
W 3 – The construction of fuel cells, the functions of the individual	1
W 4 – Selection of materials for electrodes, catalysts, membranes.	1
W 5 – Principle of operation of fuel cell type PEMFC, electrochemical	1
W 6-8 - Classification and types of fuel cells.	3
W 9 – Auxiliaries necessary for the operation of the fuel cell.	1
W 10 - Fuel cells as generators of heat and electricity	1
in residential buildings.	1
W 11 - Hybrid fuel cell hybrid systems.	1
W 12 – Economic analysis of the fuel cell system.	1
W 13 – Properties of hydrogen, hydrogen as an energy carrier.	1
W 14 – Methods of hydrogen production.	1
W 15 - Storage of hydrogen (types of alloy, cylinder) and distribution of	1
hydrogen.	1
Form of classes - tutorials	Hours
L 1 – Introduction, conditions for getting credit.	1
L 2 – Chemical reactions in cells of different types and electrolysis.	1
L 3 – Methods for determining the efficiency of fuel cells.	1
L 4 - Performance characteristics of fuel cells.	1
L 5 - Carbon materials used to build cell elements.	1
L 6 - Types of electrochemical catalysts used in low temperature cells.	1
L 7 – Porous Foaming Electrodes.	1
L 8 – Types of materials used to store hydrogen.	1
L 9,10 - Methods of selection of materials for electrodes and membranes -	2
measurement methods, types of measuring instruments (porosity, humidity,	
structure).	
L 11,12,13 - Methods of selection of materials for mono / bipolar	3
coverings - measurement methods, types of measuring instruments	
(corrosion resistance, porosity, roughness, wettability, microstructure,	
inter-surface resistance).	
L 14 – The world's fuel cell market.	1
L 15 – Final test.	1

COURSE STUDY METHODS

1. multimedia presentation	
2. blackboard, interactive whiteboard	

METHODS OF ASSESMENT (F - formative; S - summative)

F1. – activity in classes		
F2. – evaluation of task solving		

S1. – exam

STUDENT WORKLOAD

Form of activity	Workload (hours)	
Participation in lectures	15 h	
Participation in classes	15 h	
Laboratory	-	
Participation in project classes	-	
Participation in seminar	-	
Preparation course on e-learning	-	
Test	2h	
Entrance test for laboratory classes	-	
Project's defence	-	
Exam	-	
Consultation hours	4 h	
DIRECT TEACHING, hours/ ECTS	36 h / 1 ECTS	
Preparation for tutorials	4 h	
Preparation for laboratories	-	
Preparation for projects	-	
Preparation for seminars	-	
Preparation for e-learning classes	-	
Participation in e-learning classes	-	
Working on project	-	
Preparation for tests	4 h	
Preparation for exam	-	
SELF-STUDY, hours/ ECTS	8 h / 2 ECTS	
TOTAL (hours)	Σ 44 h	
TOTAL ECTS	3 ECTS	

PRIMARY AND SUPPLEMENTARY TEXTBOOKS

- Czerwiński A., Akumulatory, baterie, ogniwa, Wydawnictwa Komunikacji i Łączności, Warszawa 2005.
- 2. Chmielniak T. Technologie energetyczne, Wydawnictwa Naukowo-Techniczne, Warszawa 2008.
- 3. Redey L., Ogniwa paliwowe, Wydawnictwa Naukowo-Techniczne, Warszawa 1973.
- 4. Fuel Cell Handbook, Sixth edition, EG&G Technical Services, Inc. Science Applications International Corporation, DOE/NETL- 2002/1179
- 5. J. Larmine, A. Dicks: Fuel cell system explained, Wiley, New York 2000.

SUBJECT COORDINATOR (NAME, SURNAME, E-MAIL ADDRESS)

1. dr inż. Renata Włodarczyk, rwlodarczyk@is.pcz.czest.pl

NAME OF LECTURER (s) (NAME, SURNAME, E-MAIL ADDRESS)

1. dr inż. Renata Włodarczyk, rwlodarczyk@is.pcz.czest.pl

Learning outcome	In relation to the learning outcomes specified for the field of study	Course objectives	Course content	Course study methods	Methods of assesment
EK 1	K_W17	C.1.	W1-W15, L1-L15	1, 2, 3	F2, P1
EK 2	K_W17	C.2., C.3.	W1-W15, L1-L15	1, 2, 3	F1, P1
ЕК 3	K_W17, K_U15	C.1.	W1-W15, L1-L15	1, 2, 3	F1, P1
EK 4	K_W17	C.3.	W1-W15, L1-L15	1, 2, 3	F1, P1
EK 5	K_W17	C.3.	W1-W15, L1-L15	1, 2, 3	F1, P1

II. OTHER USEFUL INFORMATION

- 1. All the information on the class schedule is posted on the student information board and online at: <u>www.is.pcz.pl</u>
- 2. The information about the consultation hours is provided to students on the first class meeting and posted online at Instytutu Inżynierii Środowiska
- 3. The information on course completion and grade is provided to students on the first class meeting.