Course name :			
Theory of games and decision			
Type of study:	Type of study:	Examination:	
Mathematics	Full-time	Exam	
Course characteristics:	Level:	Year:	
Compulsory	First (B.Sc.)	Autumn Semester	
Type of classes:	Hours per week:	ECTS points:	
lectures, laboratory	2 L, 2 Lab	6 ECTS	

COURSE DESCRIPTION

COURSE OBJECTIVE

- **C1.** To provide students with a foundation to normative decision theory, especially the theory of games, and equip them with basic mathematical concepts and tools that are used to analyze and solve decision problems
- **C2.** To present various and sometime unexpected real-world applications of this abstract mathematical theory.
- **C3.** To equip students with knowledge which is sufficient to recognize and assess archetypal decision-making situations in complicated real-world settings.

PREREQUISITES/ ASSUMED BACKGROUND

1. Basic probability theory, basic linear algebra, general mathematical maturity.

LEARNING OUTCOMES and COMPETENCES TO BE ATTAINED

- **LO1.** The student characterizes the theoretical and practical importance of the axioms, definitions and theorems occurring in the normative decision theory .
- LO2. Student lists the most important classes of models appearing in the theory, and makes appropriate and varied interpretations. He/she recognizes archetypal decision-making situations in exemplary real-world decision problem settings.
- LO3. Student explains different key concepts of solutions to the game problems. He/she explains the practical consequences of using particular concept of a solution. Student applies the theory to solve basic/classical problems in exemplary real-world settings.

COURSE CONTENT

Lectures - Topics	Hours
L1 – Overview of decision theory - introduction. Behavioral vs. normative theory.	2
Classification of decision problems.	

L2 – Fundamentals of (mathematical) utility theory. Axioms of the preference relation.	
L3 – Utility function: basic concept, theorems, importance for normative decision theory.	2
L4 - Normal-form games. Various concepts of solutions.	2
L5 - Matrix games. Strictly and not strictly antagonistic games	2
L6 – Zero-sum two person game in pure strategies.	2
L7 – Zero-sum two person game in mixed strategies. Von Neumann minimax theorem.	2
L8 – Cooperative vs. non cooperative games. "Prisoner dilemma" problem and its various interpretations.	2
L9 – Two-person cooperative games. Nash bargaining axioms and theorem.	2
L10 – N-person cooperative games. Shepley theorem.	2
L11 – Statistical decision problems. Decision rules and their classification.	4
L12 – Multiple-criteria decision making. AHP	4
L13 – Final remarks	2
Σ	30
LABORATORY - Topics	Hours
Lab 1 – Introduction to lab.	1
Lab 2 - Linear algebra with the Maple – introduction to the Maple software	4
Lab 3 – Optimization with the Maple	3
Lab 4 – Matrix games examples, interpretation, concepts of solutions	4
Lab 5 – Zero-sum matrix games in pure strategies. Saddle points.	2
Lab 6 – Solution of zero-sum games in mixed strategies - exemplary problems	4
Lab 7 – Two-person cooperative games - exemplary analysis.	4
Lab 8 – N-person cooperative games. Computing Shepley value.	4
Lab 10 – Pairwise comparison based prioritization methods	4
Σ	30

TEACHING TOOLS

1. – multimedia presentations

2. – e-lecture notes

3. – problem sets for students

4. – work with computer algebra systems (lab) plus traditional face-to-face, blackboard supported tutorials

RECOMMENDED AND ADDITIONAL BIBLIOGRAPHY

RECOMMENDED readings (all available at various internet book-shops and libraries):

Morris P., Introduction to game theory, Spriger-Verlag 1994

Webb J. N., Game Theory: Decisions, Interaction and Evolution, Springer Verlag, London, 2007

Lindgren B.W., Elements of decision theory, Macmillan, London, 1971

Luce D. R., Raiffa H., Games and decisions; introduction and critical survey, Wiley, New York, 1957.

Adams P., Smith K., Vyborny R., Introduction to Mathematics with maple, World scientific Publishing Co. Ltd., 2004.

ADDITIONAL readings:

Rasmusen E., Games And Information, An Introduction To Game Theory, Blackwell Publishers Inc., Oxford, UK,, 2007

Geçkil II. K. Anderson, P.L , Applied game theory and strategic behavior, Taylor and Francis Group, 2010

Osborne M.J., Rubinstein A., A Course in Game Theory, MIT Press, 1994.

Hargreaves-Heap S.P., Varoufakis Y., *Game Theory-A Critical Introduction*, Taylor & Francis e-Library, London, New York 2003

TEACHERS

1. dr hab. inż. Andrzej Grzybowski , prof.PCz. andrzej.grzybowski@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-</u> <u>subjects</u> website for current students.