Course name :		
	Probabilistic System Analysis	
Type of study:	Type of study:	Examination:
Mathematics	Full-time	Assignment
Course characteristics:	Level:	Year:
Compulsory	First (B.Sc.)	Spring Semester
Type of classes:	Hours per week:	ECTS points:
lectures, laboratory, tutorials	2 L, 2 Lab, 1T	6 ECTS

COURSE DESCRIPTION

COURSE OBJECTIVE

- **C1.** Making the students familiar with the elements of the theory and methods of probability useful in engineering problems.
- **C2.** Making the students familiar with the elements of the statistical methods.
- **C3.** Introducing the students into using the computer methods in probability and statistics.

PREREQUISITES/ ASSUMED BACKGROUND

1. Course of the calculus of one variable

LEARNING OUTCOMES and COMPETENCES TO BE ATTAINED

- **LO1.** student is familiar with the basics of probability; student understands the need of probability in statistics.
- **LO2.** student is familiar with the introductory methods of a point and interval estimation; student is able to use Maple in solving simple estimation problems.
- **LO3.** student is familiar with the introductory methods of a hypothesis testing; student is able to use Maple in solving problems of this type.

COURSE CONTENT

Lecture - Topics	Hours
L1 – Course introduction. The subject of statistics, the need of probability. Types of data	
L 2 – Methods for describing data	
L 3 – The numerical descriptive measures	
L 4 – The numerical descriptive measures, cont., random experiment, events, sample	
spaces	
L 5 – Probability – axioms and properties	
L 6 – Conditional probability, total probability Bayes' theorem	
L 7 – Independence. Introduction to the random variables. Discrete random variables.	
L 8 – Probability distribution for discrete random variable, expected value. Basic discrete	
distributions.	
L9 – Continuous random variables. Probability distribution for continuous random	
variables, expected value. Basic continuous distributions.	
L 10 – Basic continuous distributions cont. Introduction to sampling distributions.	

L 11 – Introduction to sampling distributions cont. The law of large numbers. The central	2
limit theorem.	
L 12 – The point estimation	2
L 13 – The confidence intervals	2
L 14 – Test of hypothesis: single sample	2
L 15 – Test of hypothesis: two samples	2
Σ	30
Tutorials – Topics	Hours
T 1 – Types of data	1
T 2 – Graphical description of data	1
T 3 – The mode, the arithmetic mean	1
T 4 – The range of data. Variance and standard deviation	1
T 5 – Variance and standard deviation cont., Interpretation of the standard deviation.	1
T 6 – Property of probability, Bayes' rule	1
T 7 – Independence	1
T 8 – Discrete random variables: calculating the expected value and the standard deviation	1
T 9 – Discrete random variables: applications to the real world problems	1
T 10 – Continuous random variables: calculating the expected value and the standard deviation	1
T 11 – Continuous random variables: applications to the real world problems	1
T 12 – Point estimation, maximum likelihood method	1
T 13 – A confidence interval for a population mean – a large sample case	1
T 14 – Test of hypothesis about a population mean – a large sample case	1
T 15 – The power of a test, p-value of a test	1
Σ	15
Laboratory - Topics	Hours
Lab 1 – Review of integration	2
Lab 2 – Methods for describing data	2
Lab 3 – Calculating numerical descriptive measures	2
Lab 4 –Basic combinatorics	2
Lab 5 – Classical definition of probability	2
Lab 6 – Conditional probability, total probability, Bayes' theorem, independence	2
Lab 7 – Discrete random variables.	2
Lab 8 – Probability distribution for discrete random variable, expected value.	2
Lab 9 – Continuous random variables. Probability distribution for continuous random	2
variables, expected value.	
Lab 10 – Generating pseudorandom numbers	2
Lab 11 – Various problems concerning discrete and continuous random variables	2
Lab 12 – The point estimation	2
Lab 13 – The confidence intervals	2
Lab 14 – Test of hypothesis: single sample	2
Lab 15 – Test of hypothesis: two samples	2
Σ	30

TEACHING TOOLS

1. – lecture

– tutorials

3. – computer laboratory

RECOMMENDED AND ADDITIONAL BIBLIOGRAPHY

Lecture notes

Ramachandran, K. M., Tsokos.C.P., *Mathematical statistics with applications*, Elsevier Academic Press, 2009

J.T.McLeve, P.G.Benson, *Statistics for business and economics*, Macmillan, London 1988 and later issues

TEACHERS

1. Piotr Puchała, piotr.puchala@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-</u> <u>subjects</u> website for current students.