Course name :			
Ordinary Differential equations			
Type of study:	Type of study:	Examination:	
Mathematics/Informatics	Full-time	Exam	
Course characteristics:	Level:	Year:	
Compulsory	First (B.Sc.)	Autumn / Spring semester	
Type of classes:	Hours per week:	ECTS points:	
lectures, tutorials	2 L, 2T	6 ECTS	

COURSE DESCRIPTION

COURSE OBJECTIVE

- **C1.** Making the students familiar with the methods to solve certain types of differential equations and systems of differential equations.
- C2. Acquaint students with theorems to existence and uniqueness of solutions of differential equations.
- **C3.** Develop skill in formulating differential equation models which find applications to engineering, physics, biology and economics.

PREREQUISITES/ ASSUMED BACKGROUND

- 1. Course of the calculus of one and several variables (mathematical analysis).
- 2. Course of linear algebra.
- **3.** Ability to use different sources of information.
- 4. Ability to work independently and in a group.
- 5. Ability to correctly interpret and present their own activities.

TEACHING-LEARNING OUTCOMES and COMPETENCES TO BE ATTENDED

- **LO1.** student is able to solve the selected differential equations and systems of linear differential equations andis able to give the proper interpretation of the solutions.
- **LO2.** student is able to formulate and sketch the proof of the selected theorems on existence and uniqueness of solutions of differential equations.
- **LO3.** student is familiar with applications of differential equations.

COURSE CONTENT

Lectures - Topics	
L1 - Introduction to differential equations. Definitions and terminology. Differential equations as mathematical models.	2
L2 - First order differential equations: separable equations, homogeneous equations.	
L3 - First order linear differential equations, Bernoulli equation.	
L4 - Modeling with first-order differential equations.	
L5 - Exact equations. Riccati differential equation.	
L6 - Theorems on existence and uniqueness of solutions of Differential equations.	
L7 - Second order differential equations. Reduction of order.	
L8 - Cauchy-Euler equations. Higher order differential equations.	
L9 - Method of variation of parameters.	

L10 - Method of undetermined coefficients. Modeling with higher order		
differential equations.		
L11 - Series solutions of linear differential equations.		
L12 - Stability of solutions of differential equations.		
L13 - Systems of linear first-order differential equations. Homogenous linear systems.		
L14 - Non-homogenous linear systems.		
L15 - Plane autonomous systems.		
Σ	30	
Tutorials - Topics		
T1 - Classification of differential equations. Direction fields, isoclines, integral curves.		
T2 - Solving separable and homogeneous differential equations.		
T3 - Solving first order linear differential equations and Bernoulli equations.		
T4 - Modeling with first-order differential equations		
T5 - T6–Solving exact and Riccati differential equations.		
T7 - Solving second order differential equations.		
T8 - Test	2	
T9, T10 - Solving higher order differential equations. Method of variation of	4	
parameters. Method of undetermined coefficients.		
T11 - Series solutions of linear differential equations.		
T12, T13- Solving of systems of linearfirst-order differential equations.		
T14 –Stability of solutionsof differential equations.		
T15 - Test.		
Σ	30	

TEACHING TOOLS

1. – lectures using multimedia presentations
2. – blackboard and chalk or whiteboards and pens

RECOMMENDED AND ADDITIONAL BIBLIOGRAPHY

Lecture notes.

D.G. Zill, M.R. Cullen, Differential equations with boundary-value problems. Thomson Brooks/Cole 2005.

W. F. Trench, Elementary differential equations with boundary-value problems, 2013

TEACHERS

- 1. prof. dr hab.Stanisław Kukla, stanislaw.kukla@im.pcz.pl
- 2. dr Izabela Zamorska, izabela.zamorska@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-subjects</u> website for current students.