Course name :			
Mathematics in modeling of engineering systems			
Type of study:	Type of study:	Examination:	
Mathematics	Full-time	Assignment	
Course characteristics:	Level:	Year:	
Compulsory	First (B.Sc.)	Spring Semester	
type of classes:	Hours per week:	ECTS points:	
lectures, laboratory	2 L, 2 Lab	6 ECTS	

COURSE GUIDE

COURSE OBJECTIVE

- **C1.** Making the students familiar with the elements of the theory and major algorithms of operations research.
- **C2.** Acquaint students with practical skills to formulate, solve and interpret solutions to problems in the field of operations research, in particular the linear and nonlinear programming.
- **C3.** Introducing the students into using the computer implementation of the presented algorithms and the use of the presented optimization packages.

PREREQUISITES/ ASSUMED BACKGROUND

- 1. Course of elementary algebra, in particular matrix calculus.
- 2. Course of the calculus of one and several variables (course of the mathematical analysis).
- **3.** Ability to use different sources of information.
- **4.** Ability to work independently and in a group.
- 5. Ability to correctly interpret and present their own activities.

LEARNING OUTCOMES and COMPETENCES TO BE ATTAINED

- LO1 student is familiar with the basic theory of operation research
- LO2 student is able to independently formulate and solve operations research problems, is able to give them the proper practical interpretation,
- **LO3** student is familiar with presented optimization packages and is able to use it in solving the optimizations problems.

COURSE CONTENT

Lectures - Topics	Hours
L1 - Course introduction. Matrices and matrix operations.	
L2 - System of linear equations.	2
L3 - Introduction to the field of operations research. Basic concepts and notation. Examples of practical optimization problems. Formulating problem and constructing a mathematical model.	2
L4 - The linear programming model. Solving linear programming problems: the Simplex method.	2
L5 - Duality theory.	2
L6 - Transportation problem.	2
L7 - Nonlinear programming problems. Convex sets, convex and nonconvex functions, applications in nonlinear problems.	2
L8 - Types of nonlinear programming problems. The necessary and sufficient conditions for optimality.	

	•
L9 - The Kuhn – Tucker thoerem, conditions for constrained optimization.	2
L10, L11 - Quadratic programming.	
L12 - Introduction to network analysis. The basic terminology of networks and	
graphs.	
L13 - The network Simplex method	
L14, L15 - Project planning and control with PERT - CPM.	
Σ	30
Tutorials - Topics	Hours
Lab. 1 - Matrix operations.	2
Lab. 2 - Application of the Gauss – Jordan method for solving system of linear	2
equations.	
Lab. 3, Lab. 4 - Formulating the mathematical model for linear problems, primal-dual	
relationship.	
Lab. 5 - Application of the Simplex method.	
Lab. 6 ,Lab. 7 - A streamlined Simplex method for transportation problem	
Lab. 8 , Lab. 9 - Formulating the mathematical model for nonlinear problems,	
formulating and testing the conditions for optimality.	
Lab. 10, Lab. 11 - Formulating the Lagranga'e function, solving the nonlinear	
programming problem using the optimization packages.	
Lab. 12, Lab. 13- A few kind of network problems, methods of solving these	
problems.	
Lab. 14 - PERT and CPM method.	
Lab. 15 - Test.	
Σ	30

TEACHING TOOLS

1. – lectures using multimedia presentations
2. – blackboard and chalk or whiteboards and pens

RECOMMENDED AND ADDITIONAL BIBLIOGRAPHY

Lecture notes.

Hillier F., S., Lieberman G., J., *Introduction to operations research*, McGraw-Hill, Inc. 1990 Forst W., Hoffman D., *Optimization – Theory and Practise*", Springer Science + Business Media, 2010

Polyanin A. D., Manzhirov A. V., "Handbook of Mathematics for Engineers and Scientists", Chapman & Hall/CRC, Taylor & Francis Group, 2007

Adams P., Smith K., Vyborny R., Introduction to Mathematics with maple, World scientific Publishing Co. Ltd., 2004.

TEACHERS

1. dr Anita Ciekot, <u>anita.ciekot@im.pcz.pl</u>

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://iisi.pcz.pl/ClaDM/</u> website for current students.