Course name:					
Mathematics II					
Type of study:	Type of study:	Examination:			
Mathematics	Full-time	Assignment			
Course characteristics:	Level:	Year:			
Compulsory	First (B.Sc.)	Spring Semester			
type of classes:	Hours per week:	ECTS points:			
lecture, tutorials	2 L, 3 T	6 ECTS			

COURSE DESCRIPTION

COURSE OBJECTIVE

- **C1.** To introduce to the basics of integral calculus of functions of one and many variables, line integrals; to introduce to the basis of the theory of functional series and differential calculus of functions of two and three variables; To introduce to applications of integrals
- **C1.** To acquire the ability to solve single, double and triple integrals and line integrals; to analyse convergence of functional series and differentiation and analysis of functions of two and three variables

PREREQUISITES/ ASSUMED BACKGROUND

- 1. Knowledge on calculus in terms of Mathematics I.
- 2. Knowledge on linear algebra in terms of Mathematics I.

LEARNING OUTCOMES and COMPETENCES TO BE ATTAINED

- **LO1.** Knowledge on the basics of integration of a function of one variable, calculations of proper and improper integrals using various integration methods.
- **LO2.** Knowledge on the basics of theory of functional series, in particular power series and differential calculus of functions of two and three variables.
- **LO3.** Knowledge on the basics of methods of calculation and applications of double and triple Riemann integrals and line integrals.
- **LO4.** Ability to calculate and apply single and multiple integrals, and line integrals.
- **LO5.** Ability to present basic functions as functional series, to test convergence of functional series, to calculate partial derivatives and extremum of functions of two and three variables

COURSE CONTENT

Lectures - Topics	hours
L1 – Functional series	2
L2 – Indefinite integral	2
L3 – Definite integral	2
L4 – Improper integral	2

L5 - Application of integration. Probability	
L6 - Geometrical applications of definite integral	
L7 - Functions of two and three variables: domain, limit, continuity	
L8 - Partial derivatives	
L9 - Minima and maxima for functions of two and three variables	
L10 - Double integral	
L11 - Change of variables. Polar coordinates on plane	
L12 – Double integral. Applications in geometry	
L13 – Triple integral	
L14 – Triple integral – cylindrical and spherical coordinates	
L15 – Line integral of a first and second kind. Applications	
Σ	30

Tutorials - Topics	hours
T1 – Functional series	
T2 – Indefinite integral	
T3 – Definite integral	
T4 – Improper integral	
T5 - Application of integration. Probability	
T6 - Geometrical applications of definite integral	
T7 - Functions of two and three variables: domain, limit, continuity	
T8 - Partial derivatives	
T9 - Minima and maxima for functions of two and three variables	
T10 - Double integral	
T11 - Change of variables. Polar coordinates on plane	
T12 – Double integral. Applications in geometry	
T13 – Triple integral	
T14 – Triple integral – cylindrical and spherical coordinates	
T15 – Line integral of a first and second kind. Applications	
Σ	45

TEACHING TOOLS

1 – lecture with using multimedia presentations	
2- tutorials	

RECOMMENDED AND ADDITIONAL BIBLIOGRAPHY

1. Farlow J., Hall J.E., McDill J.M., West B.H, *Differential Equations & Linear Algebra*, Person Education Inc., 2007.

2. Ian Craw, Advanced Calculus and Analysis MA 1002, University of Aberdeen, 2000.

3. Trench William F., *Introduction to Real Analysis*, Pearson Education, 2003.

4. Bittinger Marvin L., Ellenbogen David J., *Calculus and its Applications*, Pearson International Edition, 2007.

5. M. Klimek, Z. Domański, J. Błaszczuk, Mathematics II, 2009– a handbook in an electronic version

TEACHERS

- prof. dr hab. inż. Małgorzata Klimek, malgorzata.klimek@im.pcz.pl
- dr inż. Anita Ciekot, anita.ciekot@im.pcz.pl
- dr inż.Jolanta Pozorska, jolanta.pozorska@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-subjects</u> website for current students.