Course name :			
Introduction to numerical methods			
Type of study:	Type of study:	Examination:	
Mathematics/Informatics	Full-time	Assignment	
Course characteristics:	Level:	Year:	
Compulsory	First (B.Sc.)	Autumn / Spring semester	
Type of classes:	Hours per week:	ECTS points:	
lectures, laboratory	1 L, 3 Lab	6 ECTS	

COURSE DESCRIPTION

COURSE OBJECTIVE

- **C1**. Making the students familiar with the selected elements of numerical methods.
- **C2**. Acquaint students with practical skills to formulate, solve and interpret solutions to problems in the field of numerical methods.
- **C3**. Introducing the students using the computer implementation of the presented algorithms.

PREREQUISITES/ ASSUMED BACKGROUND

- **1.** Course of linear algebra.
- 2. Course of the calculus of one variable
- **3.** Ability to use different sources of information.
- 4. Ability to work independently and in a group.

TEACHING-LEARNING OUTCOMES and COMPETENCES TO BE ATTENDED

- LO 1 student is familiar with the basic theory of numerical methods
- LO 2 student is able to solve equations and systems of equations in Maple,
- **LO 3** student is able to perform numerical differentiation and integration.

COURSE CONTENT

Lectures - Topics	
L1 – Course introduction. Taylor series. Order of convergence.	
L2 – Error Analysis.	
L3 – Solving equations.	
L4 – Solving systems of equations.	
L5 – Orthogonal polynomials.	
L6 – Linear and piecewise linear interpolation.	
L7 – Polynomial interpolation.	
L8 – Spline interpolation.	
L9, L10 – Linear Algebra.	
L11 – Numerical differentiation.	
L12, L13 – Numerical integration – interpolatory quadrature .	
L14, L15 – Numerical integration – Gauss quadrature.	
Σ	15

Laboratory - Topics	
Lab. 1 – Maple introduction.	
Lab. 2 - Error Analysis.	
Lab. 3 – Solving equations by using Maple.	
Lab. 4 – Solving systems of equations by using Maple.	
Lab. 5 – Orthogonal polynomials in Maple.	
Lab. 6 – Linear, piecewise linear and polynomial interpolation.	
Lab. 7 – Spline interpolation.	
Lab. 8 – Linear Algebra in Maple.	
Lab. 9 – Numerical differentiation – estimation of the order of convergence.	
Lab. 10, Lab.11 – Numerical integration – interpolatory quadrature.	
Lab.12, Lab. 13 – Numerical integration – Gauss quadrature.	
Lab 14 – Error and convergence analysis of rules for numerical integration	
Lab. 15 – Test.	3
Σ	45

TEACHING TOOLS

- 1. Lectures with multimedia presentations
- 2. Blackboard and chalk or whiteboards and markers
- **3**. Computer laboratory

RECOMMENDED AND ADDITIONAL BIBLIOGRAPHY

1. Lecture notes.

2. Lloyd N. Trefethen and David Bau, Numerical Linear Algebra, SIAM, 1997.

- **3.** Gregoire Allaire and Sidi Mahmoud Kaber. Numerical linear algebra, volume 55 of Texts in Applied Mathematics. Springer, New York, 2008. Translated from the 2002 French original by Karim Trabelsi.
- **4.** W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd Ed. Cambridge University Press, New York, 2007.
- **5.** Jonathan M. Borwein, Matthew P. Skerritt, An Introduction to Modern Mathematical Computing with Maple, Springer Undergraduate Texts in Mathematics and Technology, Springer-Verlag, New York, 2011.
- **6.** W. Cheney, D. Kincaid, Numerical Mathematics and Computing, Brooks/Cole: Cengage Learning, 2013.

TEACHERS

1. dr Tomasz Błaszczyk, tomasz.blaszczyk@im.pcz.pl

ADDITIONAL NOTES

Links to course unit teaching materials can be found on the <u>http://www.pcz.pl/english/ects-</u> subjects website for current students.