module title:				
Fluid Mechanics				
field of study:	type of study:	course code:		
Mechanical Engineering	full-time	B5_11		
course:	degree:	year: II		
Computer Modelling & Simulation	Bachelor (BSc)	semester: IV		
type of classes:	hours per semester:	No of ECTS gradity 6		
lecture, tutorials, laboratory	30LE, 30T, 15Lab	NO OF ECTS Credits: 6		

MODULE DESCRIPTION

TARGETS

- **T1.** Understanding the fundamental properties of fluids, properties of pressure as a scalar quantity, hydrostatic pressure and hydrostatic forces.
- **T2.** Understanding various methods of fluid motion description, understanding basic properties of fluid motion for ideal and viscous fluids.
- **T3.** Ability to use the one dimensional theory of fluid motion for ideal and viscous fluids to solve practical problems.

PREREQUISITES & ADDITIONAL REQUIREMENTS

- **R1.** Knowledge on the mathematical analysis and physics.
- **R2.** Knowledge from the basic course of mechanics.
- **R3.** Capability to use various information sources, including technical manuals.
- R4. Capability of individual work.
- R5. Data analysis and presentation of results

LEARNING OUTCOMES

- LO1. Knowledge on fundamentals of fluid statics.
- LO2. Knowledge on the fundamentals of fluid kinematics and dynamics of ideal fluids.
- **LO3.** Knowledge on fundamentals of dynamics of viscous fluids.
- LO4. Knowledge of basic fluid properties and ability to use them in solving practical problems.
- **LO5.** Knowledge of basic rules concerning the equilibrium of steady fluid and ability to use them in solving practical problems.
- **LO6.** Knowledge of basic rules concerning the hydrostatic pressure and hydrostatic forces acting on plane and curved surfaces, ability to use them in solving practical problems.
- **LO7.** Knowledge on fundamentals of analytical description of fluid motion and ability to use them in solving practical problems.
- **LO8.** Knowledge of Bernoulli and continuity equations for 1D flow of ideal fluid and ability to use them for measurement of pressure and velocity.
- **LO9.** Knowledge of Bernoulli and continuity equations for 1D flow of ideal fluid and ability to use them in solving practical problems.
- **LO10.** Knowledge of linear momentum equations for 1D flow of ideal fluid and ability to use them for calculation of forces acting on fluid element.
- **LO11.** Knowledge of Bernoulli and continuity equations for 1D flow of viscous fluid and ability to use them to determine hydraulic losses in pipelines.

TEACHERS

module coordinator: prof. dr hab. inż. Stanisław Drobniak - <u>drobniak@imc.pcz.czest.pl</u> academic teachers:

- prof. dr hab. inż. Stanisław Drobniak <u>drobniak@imc.pcz.czest.pl</u>
- dr inż. Dariusz Asendrych darek@imc.pcz.czest.pl

MODULE CONTENT

LECTURE	hours	
L 1-4 - Basic concepts: solid body versus fluid mechanics, fluid as a continuum, basic		
physical properties of fluids, action of normal and shear forces upon the fluid	4	
element, viscosity as a physical property of fluids and the property of fluid motion.		
L 5-6 – Equilibrium of steady fluid: equilibrium equation of steady fluid in gravity field	2	
L 7-10 – Connected vessels principle: liquid manometers, atmospheric pressure,	4	
reference level for pressure measurement, Pascal's law.	4	
L 11-16 - Hydrostatic forces: hydrostatic forces acting on plane and curved surfaces,		
hydrostatic forces acting on immersed bodies, equilibrium of immersed and floating	6	
bodies.		
L 17-20 - Description of fluid motion: Lagrange and Euler's description of fluid motion,		
fluid element trajectory and streamline, streamtube, continuity condition, Euler's and	4	
N–S equations and their solution methods.		
L 21-24 - Bernoulli equation for ideal fluids: Bernoulli equation along the streamline	4	
for ideal fluid, measurement of flow velocity with pressure tubes.		
L 25-26 - Bernoulli equation for viscous fluids: energy losses in viscous fluid, major	ſ	
and minor losses, interpretation of energy transformations in flow of viscous fluid	2	
L 27-30 – Flow of viscous fluid in a pipeline: flow in a non- circular ducts, iterative		
calculation of flow losses, flows through long pipelines, finding the correct pipe	4	
diameter for a given fluid flux, flow through a pipeline network		
Σ	30	

TUTORIALS	hours
T1-4 - Basic physical properties of fluids	4
T5-8 - Equilibrium of steady fluid	4
T9-10 - Pascal's law	2
T11 -12 - Hydrostatic forces acting on plane arbitrarily oriented surfaces	2
T13-16 - Hydrostatic forces acting on curved surfaces	4
T17-19 - Flow kinematics	3
T20-22 - Bernoulli equation for ideal fluids	4
T23-26 - Linear momentum equations for 1D flow of ideal fluid	3
T27-30 - Bernoulli equation for viscous fluids	4
Σ	30

LABORATORY	hours
L1 - Measurements of basic flow parameters by pressure tubes and taps	1

Σ	15
pressure, verification of Boyle – Marriot law	
L15 - Measurement of flow velocity in a pipeline, determination of hydrostatic	
L14 - Determination of a metacentric height for floating bodies	1
oriented flat surfaces	T
L13 - Determination of hydrostatic force and its application point for arbitrarily	
L12 - Verification of Stevin's theorem	1
L11 - Determination of the characteristic parameters for the flow through a weir	1
L10 - Energy losses in the flow through a pipeline	1
L9 - Determination of the critical Reynolds number for circular pipe flow	1
L8 - Determination of net reaction force upon the fixed het turning vane	1
L7 - Characteristics of the nozzle flow fed from the open tank	1
L6 - Determination of axisymmetric diffuser efficiency	1
L5 - Determination of the volumetric -rate correction factor (Coriolis coefficient)	1
L3-4 - Drag coefficient of streamlined and bluff bodies	1
L2 - Flow around the circular cylinder	

TEACHING TOOLS

- 1 Lecture with Power Point presentation, lecture notes, sample problems
- 2 Tutorials with Power Point presentation, tutorial book
- 3 Laboratory exercises, written report
- 4 Laboratory tutorials
- 5 Experimental rigs and measuring equipment

SOURCE LITERATURE

- 1. Drobniak S.: Fluid Mechanics An Introduction, TEMPUS PROJECT, TUCz publication, 2002.
- 2. E.J. Shaughnessy, I.M. Katz, J.P. Schaffer, Introduction to Fluid Mechanics, Oxford University Press, 2005
- 3. F.M. White, Fluid Mechanics, McGraw-Hill, 2003
- 4. J.B. Evett, C. Liu, Fundamentals of Fluid Mechanics, McGraw-Hill, 1987
- 5. Durst F.: Fluid Mechanics. An introduction to the theory of fluid flows. Springer-Verlag, Berlin, 2008